Numerical Methods in Hydrodynamics

Weiming Wu, PhD
Professor
Dept. of Civil and Environmental Eng.
Clarkson University
Potsdam, NY 13699, USA
Challenges

- Coupling of Velocity and Pressure (Water Level)
- Convection Terms
- Wetting and Drying
- Irregular and Movable Domain

Goal: Model Stability, Efficiency and Reliability
Linkage between Velocity and Pressure in NS Equations

\[
\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0
\]

\[
\frac{\partial u_x}{\partial t} + \frac{\partial (u_x^2)}{\partial x} + \frac{\partial (u_y u_x)}{\partial y} + \frac{\partial (u_z u_x)}{\partial z} = \frac{1}{\rho} \frac{F_x}{\partial x} - \frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{1}{\rho} \frac{\partial \tau_{xx}}{\partial x} + \frac{1}{\rho} \frac{\partial \tau_{xy}}{\partial y} + \frac{1}{\rho} \frac{\partial \tau_{xz}}{\partial z}
\]

\[
\frac{\partial u_y}{\partial t} + \frac{\partial (u_x u_y)}{\partial x} + \frac{\partial (u_y^2)}{\partial y} + \frac{\partial (u_z u_y)}{\partial z} = \frac{1}{\rho} \frac{F_y}{\partial y} - \frac{1}{\rho} \frac{\partial p}{\partial y} + \frac{1}{\rho} \frac{\partial \tau_{yx}}{\partial x} + \frac{1}{\rho} \frac{\partial \tau_{yy}}{\partial y} + \frac{1}{\rho} \frac{\partial \tau_{yz}}{\partial z}
\]

\[
\frac{\partial u_z}{\partial t} + \frac{\partial (u_x u_z)}{\partial x} + \frac{\partial (u_y u_z)}{\partial y} + \frac{\partial (u_z^2)}{\partial z} = \frac{1}{\rho} \frac{F_z}{\partial z} - \frac{1}{\rho} \frac{\partial p}{\partial z} + \frac{1}{\rho} \frac{\partial \tau_{zx}}{\partial x} + \frac{1}{\rho} \frac{\partial \tau_{zy}}{\partial y} + \frac{1}{\rho} \frac{\partial \tau_{zz}}{\partial z}
\]

Weak linkage: The momentum equations link the velocity to the pressure gradient, while the continuity equation is just an additional constraint on the velocity field without directly linking to the pressure.
3-D Shallow Water Equations

\[
\begin{aligned}
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} &= 0 \\
\frac{\partial u}{\partial t} + \frac{\partial (u^2)}{\partial x} + \frac{\partial (uv)}{\partial y} + \frac{\partial (wu)}{\partial z} &= -g \frac{\partial z_s}{\partial x} + \frac{1}{\rho} \frac{\partial \tau_{xx}}{\partial x} + \frac{1}{\rho} \frac{\partial \tau_{xy}}{\partial y} + \frac{1}{\rho} \frac{\partial \tau_{xz}}{\partial z} + f_c v \\
\frac{\partial v}{\partial t} + \frac{\partial (uv)}{\partial x} + \frac{\partial (v^2)}{\partial y} + \frac{\partial (wv)}{\partial z} &= -g \frac{\partial z_s}{\partial y} + \frac{1}{\rho} \frac{\partial \tau_{yx}}{\partial x} + \frac{1}{\rho} \frac{\partial \tau_{yy}}{\partial y} + \frac{1}{\rho} \frac{\partial \tau_{yz}}{\partial z} - f_c u \\
\frac{\partial z_s}{\partial t} + u_h \frac{\partial z_s}{\partial x} + v_h \frac{\partial z_s}{\partial y} &= w_h
\end{aligned}
\]

Free-Surface Kinematic Condition

The system still keep the weak linkage in the full 3-D model, with the pressure being governed by a 2-D equation.
2-D Shallow Water Equations

\[ \frac{\partial h}{\partial t} + \frac{\partial (hU)}{\partial x} + \frac{\partial (hV)}{\partial y} = 0 \]

\[ \frac{\partial (hU)}{\partial t} + \frac{\partial (hUU)}{\partial x} + \frac{\partial (hVU)}{\partial y} = -gh \frac{\partial z_s}{\partial x} + \frac{1}{\rho} \frac{\partial (hT_{xx})}{\partial x} + \frac{1}{\rho} \frac{\partial (hT_{xy})}{\partial y} \]

\[ + \frac{1}{\rho} \left( \tau_{sx} - \tau_{bx} \right) + f_c hV \]

\[ \frac{\partial (hV)}{\partial t} + \frac{\partial (hUV)}{\partial x} + \frac{\partial (hVV)}{\partial y} = -gh \frac{\partial z_s}{\partial y} + \frac{1}{\rho} \frac{\partial (hT_{yx})}{\partial x} + \frac{1}{\rho} \frac{\partial (hT_{yy})}{\partial y} \]

\[ + \frac{1}{\rho} \left( \tau_{sy} - \tau_{by} \right) - f_c hU \]

The linkage in the continuity equation is improved, but that in the momentum equations is still the same as in the Navier-Stokes equations.
Velocity-Pressure Coupling

- MAC Algorithm (Harlow & Welch, 1965)
  - Staggered grid

- Projection Method (Chorin, 1968)
  - Staggered grid

- SIMPLE Algorithms – Staggered grid
  - SIMPLE (Patankar and Spalding, 1972)
  - SIMPLER (Patankar, 1980)
  - PISO (Issa, 1982)
  - SIMPLEC (van Doormaal & Raithby, 1984)

- SIMPLE(C) – Non-staggered grid
  - (Rhie and Chow, 1983; Peric, 1985)
Staggered Grid
Partial Staggered Grid
Non-staggered (Collocated) Grid
Comments

- Staggered Grid is efficient to avoid checkerboard oscillation, but it is more complex in 3D curvilinear grid system.

- Partial Staggered Grid is not often used in CFD.

- Non-staggered Grid is simpler in 3D curvilinear grid system, but needs to use Rhie and Chow’s Momentum Interpolation Technique.
Semi-implicit Algorithm (Casulli, 1990)

Use rectangular, staggered grid.

Discretized continuity equation:

\[
\frac{z_{s,i,j}^{n+1} - z_{s,i,j}^{n}}{\Delta t} = \frac{\Delta t}{\Delta x} \left( h_{i+1/2,j}^{n} U_{i+1/2,j}^{n+1} - h_{i-1/2,j}^{n} U_{i-1/2,j}^{n+1} \right) - \frac{\Delta t}{\Delta y} \left( h_{i,j+1/2}^{n} V_{i,j+1/2}^{n+1} - h_{i,j-1/2}^{n} V_{i,j-1/2}^{n+1} \right)
\]

Discretized momentum equations:

\[
U_{i+1/2,j}^{n+1} = F\left(U_{i+1/2,j}^{n}\right) - g \frac{\Delta t}{\Delta x} \left( z_{s,i+1,j}^{n+1} - z_{s,i,j}^{n+1} \right) - \Delta t \gamma_{i+1/2,j}^{n} U_{i+1/2,j}^{n+1}
\]

\[
V_{i,j+1/2}^{n+1} = F\left(V_{i,j+1/2}^{n}\right) - g \frac{\Delta t}{\Delta x} \left( z_{s,i,j+1}^{n+1} - z_{s,i,j}^{n+1} \right) - \Delta t \gamma_{i,j+1/2}^{n} V_{i,j+1/2}^{n+1}
\]

Substituting the above momentum equations to continuity equation yields the Poisson equation for water level.
Projection Method

Use staggered grid.

Discretized momentum equation:

\[ \vec{U}^{n+1} = \vec{U}^n + \Delta t \vec{G} - \frac{\Delta t}{\rho} \nabla (p^n + p') \]

Define

\[ p^{n+1} = p^n + p' \]

\[ \vec{U}^* = \vec{U}^n + \Delta t \vec{G} - \frac{\Delta t}{\rho} \nabla p^n \]

Thus, pressure and velocity corrections are related by

\[ \vec{U}^{n+1} = \vec{U}^* - \frac{\Delta t}{\rho} \nabla p' \]

\[ p = \rho g z_s \]
Continuity equation:

\[ \frac{\partial h}{\partial t} + \nabla \cdot (h \overline{U}^{n+1}) = \frac{\partial h}{\partial t} + \nabla \cdot (h \overline{U}^*) - \frac{\Delta t}{\rho} h \nabla^2 p' - \frac{\Delta t}{\rho} \nabla h \cdot \nabla p' = 0 \]

Using

\[ \frac{\partial h}{\partial t} = \left( h^{n+1} - h^n \right) / \Delta t = p'/ (\rho g \Delta t) \]

and ignoring the last term, one obtains

\[ (1 - \Delta t^2 g h \nabla^2) p' = -\Delta t \rho g \nabla \cdot (h \overline{U}^*) \]

Note: the above algorithm is explicit for pressure. An implicit one can be derived by

\[ p^{n+1} = p^* + p' \]
Use quadrilateral, non-staggered grid.

Discretized continuity equation:

\[ p_P^{n+1} = p_P^n - g \frac{\Delta t}{\Delta A} (F_e - F_w + F_n - F_s) \]

where \( F_e, F_w, F_n \) and \( F_s \) are fluxes at cell faces \( e, w, n \) and \( s \).

The key issue is how to evaluate the fluxes \( F \) from the quantities stored on nodes \( P, E, W, N \) and \( S \).

Linear interpolation may cause oscillations.
Discretized momentum equation at cell center P:

\[
U_{i,P}^{n+1} = \frac{1}{d_P^u} \left( \sum_{l=W,E,S,N} a_{l}^u U_{i,l}^{n+1} + S_{u_i} \right) + D_i^2 \left( p_s^{n+1} - p_n^{n+1} \right) + \frac{(h J \alpha_i^1 \Delta \eta)_P}{d_P^u} \left( p_w^{n+1} - p_e^{n+1} \right)
\]

Interpolate the momentum equations discretized on nodes W and P (Rhie and Chow, 1983)

\[
U_{i,w}^{n+1} = \left[ (1 - f_{x,P}) G_{i,PW}^1 + f_{x,P} G_{i,P}^1 \right] + \left[ (1 - f_{x,P})/a_{PW}^u + f_{x,P}/a_P^u \right] (h J \alpha_i^1 \Delta \eta)_w (p_{W}^{n+1} - p_P^{n+1})
\]

Velocity & pressure corrections:

\[
U_{i,w} = U_{i,w}^* + \alpha_u Q_{i,w}^1 (p_W' - p_P')
\]

where \( p' = p^{n+1} - p^* \)

Flux definition leads to:

\[
F_w = F_{w}^* + a_{W}^P (p_W' - p_P')
\]
Discretized continuity equation:

\[ p_{P}^{n+1} = p_{P}^{n} - g \frac{\Delta t}{\Delta A} (F_{e} - F_{w} + F_{n} - F_{s}) \]

Relation of flux and pressure corrections (Rhie and Chow, 1983):

\[ F_{w} = F_{w}^{*} + a_{w}^{(p)} (p_{w}' - p_{P}') \quad F_{s} = F_{s}^{*} + a_{s}^{(p)} (p_{s}' - p_{P}') \]

Pressure correction equation:

\[
\begin{bmatrix}
\sum_{k=W,E,S,N} a_{k}^{(p)} + \frac{\Delta A}{g \Delta t}
\end{bmatrix} p_{P}' = \sum_{k=W,E,S,N} a_{k}^{(p)} p_{k}' - \left(F_{e}^{*} - F_{w}^{*} + F_{n}^{*} - F_{s}^{*}\right) - \frac{\Delta A}{g \Delta t} (p_{P}^{*} - p_{P}^{n})
\]
Structured vs. Unstructured Grids

- **Structured Grids**
  - Rectangular
  - Quadrilateral

- **Unstructured Grids**
  - Triangular
  - Quadrilateral with unstructured index and connectivity
  - Polygons
Grids Used

- Regular Cartesian
- Nonuniform Cartesian
- Telescoping Cartesian
- Stretched Telescoping Cartesian
- Quadrilateral (Un)Structured
- Triangular Unstructured
- Hybrid Unstructured
Galveston Entrance Channel, TX
Columbia River, USA

Hybrid mesh
~16k cells
20 m to 3.5 km resolution
## Comments

<table>
<thead>
<tr>
<th></th>
<th>Structured</th>
<th>Unstructured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid Connectivity</td>
<td>Simpler</td>
<td>More complex</td>
</tr>
<tr>
<td>Grid Flexibility</td>
<td>Less</td>
<td>More</td>
</tr>
<tr>
<td>Idle Nodes</td>
<td>More</td>
<td>Less</td>
</tr>
<tr>
<td>Coefficient Matrix</td>
<td>Banded, Symmetric</td>
<td>Sparse, Asymmetric</td>
</tr>
<tr>
<td>Algebraic Eq. Solver</td>
<td>More efficient</td>
<td>Less efficient</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Problem-dependent</td>
<td>Problem-dependent</td>
</tr>
</tbody>
</table>

Prof. Dr. Weiming Wu, Dept. of Civil and Environmental Eng.
Explicit vs. Implicit Schemes

- Explicit
  - Euler Scheme
  - Runge-Kutta Method

- Alternate Direction Implicit
  - Operator Splitting Method

- Full-Domain Implicit
  - Backward Difference (Two-Level)
  - Three-level Implicit
  - Semi-Implicit (e.g. Crank-Nicholson)
<table>
<thead>
<tr>
<th></th>
<th>Explicit</th>
<th>Implicit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coding</td>
<td>Simpler</td>
<td>More complex</td>
</tr>
<tr>
<td>Parallel</td>
<td>Easier</td>
<td>More difficult</td>
</tr>
<tr>
<td>Drying and wetting</td>
<td>Simpler</td>
<td>More complex</td>
</tr>
<tr>
<td>Numerical diffusion</td>
<td>Less</td>
<td>More</td>
</tr>
<tr>
<td>Time step</td>
<td>Shorter</td>
<td>Longer</td>
</tr>
<tr>
<td>Efficiency (single-processor computer)</td>
<td>Less</td>
<td>More (depend on iteration solver)</td>
</tr>
</tbody>
</table>
Dam-Break Flows: (a)&(b) Implicit; (c)&(d) Explicit
Explicit vs. Implicit Schemes

- For highly transient flows such as dam-break flow, explicit algorithms are usually more accurate.

- If there is sharp gradient, explicit algorithms are usually more accurate.

- For gradually varying flows and mass transport, numerical diffusion by implicit schemes is usually acceptable.
Upwinding Schemes

➤ Hybrid Upwind/Central Difference
➤ Exponential Difference Scheme
➤ QUICK (with limiters)
➤ SOUCUP and HLPA (used in FVM)
➤ Upwind FEM Schemes
➤ Others
Upwinding Schemes in Case of Pure Advection (Zhu, 1991)

(c) Predicted profiles at $t = 100$ ($201 \times 2$ grid, $\Delta t = 0.4$)

(d) Predicted profiles at $t = 100$ ($1001 \times 2$ grid, $\Delta t = 0.1$)
Algebraic Equation Solvers

- **Point-by-Point Methods**
  - Jacobi Method
  - Gauss-Seidel Method

- **Line-by-Line Methods**
  - ADI

- **SIP (Strongly Implicit Procedure)**

- **Conjugate Gradient Methods**
  - CG, CGS, CGSTAB, GMRES
  - With Preconditioning (e.g. ICCG)
Comments

- Jacobi and Gauss-Seidel Methods
  - For both structured and unstructured grids
  - Easy to be parallelized

- ADI and SIP methods
  - For structured grids
  - Efficient

- CG, CGS, CGSTAB, GMRES
  - For structured and/or unstructured grids
  - Some are efficient
**Efficiency of Algebraic Equation Solvers**  
*(Ferziger and Peric, 1995)*

<table>
<thead>
<tr>
<th>Grid</th>
<th>GS</th>
<th>LGS-ADI</th>
<th>SIP</th>
<th>ICCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>8x8</td>
<td>74</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>16x16</td>
<td>293</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>32x32</td>
<td>1164</td>
<td>18</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>64x64</td>
<td>4639</td>
<td>53</td>
<td>38</td>
<td>21</td>
</tr>
<tr>
<td>128x128</td>
<td>--</td>
<td>189</td>
<td>139</td>
<td>41</td>
</tr>
</tbody>
</table>

Numbers of iterations required by various solvers to reduce the normalized L₁ residual norm below 10⁻⁵ for the 2D Laplace equation with Direchlet boundary conditions on a rectangular domain 10x1 with uniform grid in both directions.
Under-Relaxation -- Traditional

Consider

\[ a_P \phi_{i,j} = a_W \phi_{i-1,j} + a_E \phi_{i+1,j} + a_S \phi_{i,j-1} + a_N \phi_{i,j+1} + b \]

\[ A\Phi = b \]

Define

\[ \Delta \Phi = \Phi^{(1)} - \Phi^{(0)} \]

\[ R = b - A\Phi^{(0)} \]

\[ A\Delta \Phi = R \]

Solve it and apply under-relaxation:

\[ \Phi^{(1)} = \Phi^{(0)} + \alpha_\phi \Delta \Phi \]
Under-Relaxation (Majumdar 1988)

Reformulate

\[ \phi_P = \left( \sum_{k=W,E,S,N} a_k \phi_k + b \right)/a_P \]

Apply under-relaxation:

\[ \phi_P^{(1)} = \alpha_\phi \left( \sum_{k=W,E,S,N} a_k \phi_k + b \right)/a_P + (1 - \alpha_\phi)\phi_P^{(0)} \]

Then

\[ A' \Phi = b' \quad \Rightarrow \quad A' \Delta \Phi = R' \]

\[ \Phi^{(1)} = \Phi^{(0)} + \Delta \Phi \]

Majumdar (1988) used this in SIMPLE(C) on collocated grid with Rhie and Chow’s momentum interpolation.
Wetting and Drying

- Problem due to water edge change.

- Dry nodes are excluded in explicit algorithms.

- Dry nodes are included in implicit algorithms, but treated with
  - Small imaginary depth;
  - “Freezing” method;
  - Porous medium method; or
  - Finite slot method.
Free Surface

- Volume tracking methods:
  - MAC
  - VOF
  - Level set

- Surface tracking methods:
Moving or Adaptive Mesh

Stretching or $\sigma$ Coordinate.
(1) Kinematic condition
\[ \frac{\partial z_s}{\partial t} + u_{hx} \frac{\partial z_s}{\partial x} + u_{hy} \frac{\partial z_s}{\partial y} = u_{hz} \]

(2) Depth-integrated 2-D continuity equation
\[ \frac{\partial h}{\partial t} + \frac{\partial (h U_x)}{\partial x} + \frac{\partial (h U_y)}{\partial y} = 0 \]

(3) Horizontal 2-D Poisson equation (Wu et al., 2000)
\[ \frac{\partial^2 z_s}{\partial x^2} + \frac{\partial^2 z_s}{\partial y^2} = S_z \]

Valid only for gradually-varied flows

\[ S_z = -\frac{\partial}{\partial t}\left(\frac{\partial U_x}{\partial x} + \frac{\partial U_y}{\partial y}\right) - \left(\frac{\partial U_x}{\partial x}\right)^2 - 2\frac{\partial U_x}{\partial y}\frac{\partial U_y}{\partial x} - \left(\frac{\partial U_y}{\partial y}\right)^2 - U_x\left(\frac{\partial^2 U_x}{\partial x^2} + \frac{\partial^2 U_y}{\partial y^2}\right) - U_y\left(\frac{\partial^2 U_x}{\partial x\partial y} + \frac{\partial^2 U_y}{\partial y^2}\right) + \frac{1}{\rho}\left(\frac{\partial^2 T_{xx}}{\partial x^2} + 2\frac{\partial^2 T_{xy}}{\partial x\partial y} + \frac{\partial^2 T_{yy}}{\partial y^2}\right) - \frac{1}{\rho} \frac{\partial}{\partial x}\left(\frac{\tau_{bx}}{h}\right) - \frac{1}{\rho} \frac{\partial}{\partial y}\left(\frac{\tau_{by}}{h}\right) \]
Coupling Flow and Sediment

- Fully coupling
  - Consider interactions between flow, sediment transport and bed change
    - Holly et al. (1990): fully implicit
    - Recent models of dam-break flow over mobile beds (Wu et al. 2007, 2012; Cao et al., 2004): fully explicit
  - Valid for high-speed flow with high concentration

- Fully decoupling
  - Calculate flow, sediment transport, bed change and bed material sorting separately
  - Valid for common flows with low sediment concentration
    - Most of existing models use this approach

- Semi-coupling
  - Wu et al. (2004)
Semi-Coupling Technique

Flow Calculation

Decoupled Solution

Sediment Calculation

Sediment Transport

Bed Change

Bed Material Sorting

Coupled Solution
Discretization: Sediment Transport

- **Suspended-load transport equation**

\[
\frac{\rho_p \Delta A_P}{\Delta t} \left( \frac{h_{P}^{n+1} C_{k,P}^{n+1}}{\beta_{s,P}^{n+1}} - \frac{h_{P}^{n} C_{k,P}^{n}}{\beta_{s,P}^{n}} \right) = a_E^{(C)} C_{k,E}^{n+1} + a_W^{(C)} C_{k,W}^{n+1} + a_N^{(C)} C_{k,N}^{n+1} + a_S^{(C)} C_{k,S}^{n+1} - a_P^{(C)} C_{k,P}^{n+1} \\
+ \alpha \omega_{sk} \rho_p \Delta A_P \left( C_{*k,P}^{n+1} - C_{k,P}^{n+1} \right) + S_{k,P} \\
(k=1, 2, \ldots, N)
\]

- **Bed-load transport equation**

\[
\frac{\Delta A_P}{\Delta t} \left( \frac{q_{b,k,P}^{n+1}}{u_{b,P}^{n+1}} - \frac{q_{b,k,P}^{n}}{u_{b,P}^{n}} \right) = a_E^{(q)} q_{b,k,E}^{n+1} + a_W^{(q)} q_{b,k,W}^{n+1} + a_N^{(q)} q_{b,k,N}^{n+1} + a_S^{(q)} q_{b,k,S}^{n+1} - a_P^{(q)} q_{b,k,P}^{n+1} \\
+ \frac{\Delta A_P}{L_t} \left( q_{b*k,P}^{n+1} - q_{b,k,P}^{n+1} \right)
\]
- **Bed change equation**

\[
\Delta z_{bk,P}^{n+1} = \frac{\alpha \omega sk \Delta t}{1 - p'_m} \left( C_{k,P}^{n+1} - C_{*k,P}^{n+1} \right) + \frac{\Delta t}{(1 - p'_m)L_t} \left( q_{bk,P}^{n+1} - q_{b*P}^{n+1} \right)
\]

\[
\Delta z_{b,P}^{n+1} = \sum_{k=1}^{N} \Delta z_{bk,P}^{n+1}
\]

- **Bed material sorting equation**

\[
p_{bk,P}^{n+1} = \frac{\Delta z_{bk,P}^{n+1} + \delta_{m,P}^{n} p_{bk,P}^{n} + p_{bk,P}^{*n} \left( \delta_{m,P}^{n+1} - \delta_{m,P}^{n} - \Delta z_{b,P}^{n+1} \right)}{\delta_{m,P}^{n+1}}
\]

- **Sediment transport capacity**

\[
C_{*k,P}^{n+1} = p_{bk,P}^{n+1} C_{k,P}^{*n+1} \quad q_{b*P}^{n+1} = p_{bk,P}^{n+1} q_{bk,P}^{*n+1}
\]

---

Prof. Dr. Weiming Wu, Dept. of Civil and Environmental Eng.
Solution of Sediment Transport

- Coupling bed change and bed material sorting equations and sediment transport capacity formulas yields

\[
\Delta z_{b,P}^{n+1} = \left\{ \sum_{k=1}^{N} \frac{\alpha \omega_{sk} \Delta t \delta_{m,P}^{n+1} C_{k,P}^{n+1} + \Delta t \delta_{m,P}^{n+1} q_{bk,P}^{n+1}}{L_t} \left(1 - p'_m\right) \delta_{m,P}^{n+1} + \alpha \omega_{sk} \Delta t C_{k,P}^{*n+1} + \Delta t q_{bk,P}^{*n+1} / L_t \right\} - \sum_{k=1}^{N} \left[ \alpha \omega_{sk} \Delta t C_{k,P}^{*n+1} + \Delta t q_{bk,P}^{*n+1} / L_t \left[ \delta_{m,P}^{n} p_{bk,P}^{n} + \left( \delta_{m,P}^{n+1} - \delta_{m,P}^{n} \right) p_{bk,P}^{n} \right] \right] \left(1 - p'_m\right) \delta_{m,P}^{n+1} + \alpha \omega_{sk} \Delta t C_{k,P}^{*n+1} + \Delta t q_{bk,P}^{*n+1} / L_t \right\} - \left\{ 1 - \sum_{k=1}^{N} \left[ \alpha \omega_{sk} \Delta t C_{k,P}^{*n+1} + \Delta t q_{bk,P}^{*n+1} / L_t \right] p_{bk,P}^{n} \right\} \left(1 - p'_m\right) \delta_{m,P}^{n+1} + \alpha \omega_{sk} \Delta t C_{k,P}^{*n+1} + \Delta t q_{bk,P}^{*n+1} / L_t \right\}
\]

- Thus, a coupled solution procedure is established for sediment. This procedure is stable and avoids negative bed material gradation.
Note that the flow and sediment control volumes near the bed are not conformal, because suspended-load domain starts from the interface between bed load and suspended load, whereas the flow domain starts from the bed. One simple treatment is to set the bed-load layer covering the first near-bed layer and the suspended-load domain starts from the second layer.
Assume the sediment concentration distribution between the interface \( \delta \) and the cell center 2 to be the same as that at equilibrium. Ignoring the storage, convection and horizontal diffusion in the suspended-load transport equation yields

\[
\frac{\partial}{\partial z} \left( \varepsilon_s \frac{\partial c_k}{\partial z} + \omega_{sk} c_k \right) = 0
\]

which has the locally-linearized analytical solution:

\[
c_k = a_1 + a_2 e^{-z\omega_{sk}/\varepsilon_s}
\]

Using the sediment concentrations at \( \delta \) and point 2 as conditions to determine the coefficients \( a_1 \) and \( a_2 \):

\[
c_{bk} = c_{2k} + c_{b*} \left[ 1 - e^{-(z_2 - z_b - \delta)\omega_{sk}/\varepsilon_s} \right]
\]

In the case that \( z_2 - z_b - \delta \) is small, the above exponential scheme can be simplified as the linear scheme:

\[
c_{bk} = c_{2k} + c_{b*} \left( z_2 - z_b - \delta \right) \frac{\omega_{sk}}{\varepsilon_s}
\]

